Radiation Hard, High Efficiency, Quadruple Junction Solar Cells Based on InGaAsN, Phase I

Completed Technology Project (2015 - 2015)

Project Introduction

The proposed innovation is the development of a technology that will enable the manufacture of high-efficiency (>40%), quadruple(4) junction solar cells on lightweight Ge substrates. We plan to achieve this objective by developing a new semiconductor alloy, InGaAsN, which will be employed as the 1.18 eV bottom cell in quadruple-junction [InGaP (1.8 eV) / GaInAs P(1.5 eV) / InGaAsN (1.18 eV) / Ge (0.67eV)] solar cells. The InGaAsN alloy material will be lattice matched to Ge, which is a clear improvement over existing inverted metamorphic (IMM) technology, specifically, the existing lattice-mismatched InGaAs 1.0 eV bottom cell is replaced with a lattice-matched InGaAsN 1.18 eV bottom cell. This eliminates the need to grow a thick graded buffer layer. Another advantage of this system is higher efficiency and higher reliability solar cells which can effectively be a drop in replacement to the existing Ge based space cells. At the end of this project, we expect to have developed and integrated InGaAsN - 1.18 eV material, which can be used in Ge-based multijunction cells that have the potential to achieve efficiencies in excess of 40% at AMO, one sun illumination.

Primary U.S. Work Locations and Key Partners

Radiation hard, high efficiency, quadruple junction solar cells based on InGaAsN, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Radiation Hard, High Efficiency, Quadruple Junction Solar Cells Based on InGaAsN, Phase I

Completed Technology Project (2015 - 2015)

Organizations Performing Work	Role	Туре	Location
MicroLink Devices, Inc.	Lead Organization	Industry Minority-Owned Business	Niles, Illinois
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Illinois	Ohio

Project Transitions

June 2015: Project Start

Closeout Summary: Radiation hard, high efficiency, quadruple junction solar c ells based on InGaAsN, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/139362)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

MicroLink Devices, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Sudersena Rao Tatavarti Bharatam

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Radiation Hard, High Efficiency, Quadruple Junction Solar Cells Based on InGaAsN, Phase I

Completed Technology Project (2015 - 2015)

Images

Briefing Chart Image

Radiation hard, high efficiency, quadruple junction solar cells based on InGaAsN, Phase I (https://techport.nasa.gov/imag e/127207)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 TX03.1 Power Generation and Energy Conversion
 TX03.1.1 Photovoltaic
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

